Table S1. Details of the metric measures used by each method.

Name of the metric measure	Formula
Manhattan	$D(g,G) = \sum_{i}^{m} f_{g}^{i} - f_{G}^{i} $
Delta*	$\delta^*(g,G) = \frac{1}{m} \sum_{i}^{m} f_g^i - f_G^i $
Euclidean	$D(g,G) = \sqrt{\sum_{i}^{m} (f_{g}^{i} - f_{G}^{i})^{2}}$
Covariance	$D(g,G) = \frac{1}{m} \sum_{i}^{m} f_{g}^{i} \cdot f_{G}^{i}$
Correlation	$D(g,G) = \frac{\sum_{i}^{m} (f_{g}^{i} - \bar{f}_{g}) \cdot (f_{G}^{i} - \bar{f}_{G})}{\sqrt{\sum_{i}^{m} (f_{g}^{i} - \bar{f}_{g})^{2} \cdot \sqrt{\sum_{i}^{m} (f_{G}^{i} - \bar{f}_{G})^{2}}}}$
Kullback-Leibler	$D(g,G) = \sum_{i}^{m} f_{g}^{i} \cdot \ln \frac{f_{g}^{i}}{f_{G}^{i}}$
Chi ²	$D(g,G) = \sum_{i}^{m} \frac{(f_{g}^{i} - f_{G}^{i})^{2}}{f_{G}^{i}}$
Mahalanobis	$S(g,G) = (f_g - f_G)^T \cdot S^{-1} \cdot (f_g^i - f_G^i)$

D(g,G), $\delta^*(g,G)$ or S(g,G) is the distance/score of gene g to/in genome G; m is the number of attributes of the criterion under consideration (for example m=16 for dinucleotides); f_g is the frequency of attribute i for gene g and f_G it's frequency in the complete genome; \bar{f}_g and \bar{f}_G correspond to the mean values over all attributes calculated for gene g and for genome G; f_g corresponds to the vector of all frequencies of the criterion evaluated (for example the 16 frequencies of all dinucleotides) in gene g and S^{-1} corresponds to the covariance matrix.